ORIGINAL ARTICLE |
|
Year : 2020 | Volume
: 13
| Issue : 12 | Page : 557-565 |
|
Fermentation of mulberry leaves with Cordyceps militaris enhanced anti-adipogenesis activity in 3T3-L1 cells through down-regulation of PPAR-γ pathway signaling
Lu Guo1, Jum Soon Kang1, Young Hoon Park1, Beong Il Je1, Dae Youn Hwang2, Woo Hong Joo3, Young Whan Choi4
1 Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea 2 Department of Biomaterials Science, Pusan National University, Miryang 50463, Republic of Korea 3 Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea 4 Department of Horticultural Bioscience; Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
Correspondence Address:
Young Whan Choi Department of Horticultural Bioscience; Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463 Republic of Korea
 Source of Support: This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through High Value-added Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(116027032HD020), Conflict of Interest: None  | 18 |
DOI: 10.4103/1995-7645.296724
|
|
Objective: To establish an efficacious and efficient fermentation method of enhancing the anti-adipogenesis effect of mulberry (Morus alba) leaves using Cordyceps militais.
Methods: Dried mulberry leaves, dried mulberry leaves with 50% raw silkworm pupa and raw silkworm pupa were fermented with Cordyceps militais for 4 weeks at 25 °C, after which the dried mulberry leaves and fermented product were extracted with 70% ethanol and subjected to high performance liquid chromatography (HPLC). The contents of cordycepin, pelargonidin, chlorogenic acid, iso-quercetin and caffeic acid were determined. We then used the 3T3-L1 cells to investigate whether extracts of fermentation enhanced anti-adipogenesis activity in vitro.
Results: HPLC showed that fermentation changed the contents of cordycepin, pelargonidin, chlorogenic acid, iso-quercetin and caffeic acid. Furthermore, fermented dried mulberry leaves with 50% raw silkworm pupa had a better efficacy of anti-adipogenesis than dried mulberry leaves, fermented dried mulberry leaves and fermented silkworm pupa and inhibited triglycerides accumulation and glucose consumption. Additionally, fermented dried mulberry leaves with 50% raw silkworm pupa inhibited PPAR-γ signaling.
Conclusions: Fermentation with Cordyceps militaris enhanced anti-adipogenesis efficacy of mulberry leaves. |
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|