Impact Factor 2021: 3.041 (@Clarivate Analytics)
5-Year Impact Factor: 2.776 (@Clarivate Analytics)
Impact Factor Rank: 10/24, Q2 (Tropical Medicine)
  • Users Online: 1060
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2020  |  Volume : 13  |  Issue : 12  |  Page : 557-565

Fermentation of mulberry leaves with Cordyceps militaris enhanced anti-adipogenesis activity in 3T3-L1 cells through down-regulation of PPAR-γ pathway signaling


1 Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
2 Department of Biomaterials Science, Pusan National University, Miryang 50463, Republic of Korea
3 Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
4 Department of Horticultural Bioscience; Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea

Correspondence Address:
Young Whan Choi
Department of Horticultural Bioscience; Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463
Republic of Korea
Login to access the Email id

Source of Support: This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through High Value-added Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(116027032HD020), Conflict of Interest: None


DOI: 10.4103/1995-7645.296724

Rights and Permissions

Objective: To establish an efficacious and efficient fermentation method of enhancing the anti-adipogenesis effect of mulberry (Morus alba) leaves using Cordyceps militais. Methods: Dried mulberry leaves, dried mulberry leaves with 50% raw silkworm pupa and raw silkworm pupa were fermented with Cordyceps militais for 4 weeks at 25 °C, after which the dried mulberry leaves and fermented product were extracted with 70% ethanol and subjected to high performance liquid chromatography (HPLC). The contents of cordycepin, pelargonidin, chlorogenic acid, iso-quercetin and caffeic acid were determined. We then used the 3T3-L1 cells to investigate whether extracts of fermentation enhanced anti-adipogenesis activity in vitro. Results: HPLC showed that fermentation changed the contents of cordycepin, pelargonidin, chlorogenic acid, iso-quercetin and caffeic acid. Furthermore, fermented dried mulberry leaves with 50% raw silkworm pupa had a better efficacy of anti-adipogenesis than dried mulberry leaves, fermented dried mulberry leaves and fermented silkworm pupa and inhibited triglycerides accumulation and glucose consumption. Additionally, fermented dried mulberry leaves with 50% raw silkworm pupa inhibited PPAR-γ signaling. Conclusions: Fermentation with Cordyceps militaris enhanced anti-adipogenesis efficacy of mulberry leaves.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3597    
    Printed99    
    Emailed0    
    PDF Downloaded422    
    Comments [Add]    
    Cited by others 1    

Recommend this journal