Impact Factor 2021: 3.041 (@Clarivate Analytics)
5-Year Impact Factor: 2.776 (@Clarivate Analytics)
Impact Factor Rank: 10/24, Q2 (Tropical Medicine)
  • Users Online: 568
  • Print this page
  • Email this page

Table of Contents
Year : 2019  |  Volume : 12  |  Issue : 7  |  Page : 291-299

Potential of herbal constituents as new natural leads against helminthiasis: A neglected tropical disease

NMIMS, School of Pharmacy and Technology Management, Shirpur, India

Date of Submission19-Feb-2019
Date of Decision21-Jun-2019
Date of Acceptance25-Jun-2019
Date of Web Publication09-Jul-2019

Correspondence Address:
Shashikant B Bagade
SVKM’s NMIMS School of Pharmacy & Technology Management, Shirpur, Bank of Tapi River, Dist. Dhule, Maharashtra, 425405
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1995-7645.262072

Rights and Permissions

The WHO reports that billions of people and animals in tropical and subtropical regions are affected by helminthiasis as neglected tropical disease. It is predominant in underdeveloped areas; nevertheless, the increase in the number of travelers and migrants has made this infection more common. The current mass drug treatment produces severe side effects and many strains of helminths are resistant to them. None of the chemotherapeutic drugs meets the ideal requirements of anthelmintics, such as broad spectrum of activity, single dose cure, free from side effect and cost-effectiveness. Today, many researchers are screening the traditional herbal system in search of the anthelmintic herbal constituents which overcome all the problems of synthetic drugs. Several researchers proclaim anthelmintic activity of herbal medicines by using different experimental models. The present review demonstrates natural product drug discovery, outlining potential of herbal constituents from natural sources as natural leads against helminthiasis.

Keywords: Neglected tropical diseases, Herbal constituents, Helminthiasis, Herbal anthelmintics

How to cite this article:
Patil KD, Bagade SB, Sharma SR, Hatware KV. Potential of herbal constituents as new natural leads against helminthiasis: A neglected tropical disease. Asian Pac J Trop Med 2019;12:291-9

How to cite this URL:
Patil KD, Bagade SB, Sharma SR, Hatware KV. Potential of herbal constituents as new natural leads against helminthiasis: A neglected tropical disease. Asian Pac J Trop Med [serial online] 2019 [cited 2022 Nov 28];12:291-9. Available from:

  1. Introduction Top

Human beings have relied on the Mother Nature throughout the ages for the treatment of a wide range of diseases. In particular, herbal drugs have formed the basis of sophisticated traditional medicinal systems. The earliest records from 2 600 BC, approximately 1 000 plant-derived substances were documented in Mesopotamia. Most of them are still used today for the treatment of ailments like tropical diseases[1].

Neglected tropical diseases (NTDs) are among the seventeen life threatening endemic ailments that occur in tropical and subtropical regions covering 149 countries[2]. Billions of people were affected with the NTDs and people died from these infections is more than half million every year[3],[4],[5],[6]. The infections mainly affect peoples who live on less than US$ 2 per day or under the World Bank poverty level of US$ 1.25 per day[7]. Helminthiasis is one of the major public health problems and development challenges, and it is estimated that each species affect more than one billion people all over the world and is classified as neglected tropical disease by WHO[8],[9]. It is mainly associated with poverty and is most predominant in the poorest populations of the developing countries. Helminthiasis is one of the major reasons behind poverty of these countries as it affects the pregnancy, child growth, worker productivity, and outcome[10],[11]. In these regions, it mainly contributed to malnutrition, anemia, eosinophilia, pneumonia and reduced physical and intellectual abilities[11],[12],[13]. Moreover, it offers very less profit for pharmaceutical industries in returns of huge investment on research and development of new chemical entities[14].

Helminthiasis is the most common infection caused by worms, which is mainly divided into two phyla. Nemathelminths are nematodes, e.g. hookworms (Ancylostoma duodenale) and roundworms (Ascaris lumbricoids). Platyhelminths are flatworms divided into the cestode, e.g. tapeworms (Taenia solium, Taenia saginata) and the trematode e.g. flukes (Schistosoma mansoni and Schistosoma hematobolium)[15].

  2. Helminths affecting humans Top

The helminths affect approximately more than 1.45 billion people across the globe. Among them, Ascaris lumbricoides affects more than 819 million, Trichuris trichiura affects over 465 million and hookworm (Necator americanus and/or Ancylostoma duodenale) affects over 439 million peoples worldwide[16]. Helminthiasis leads to malnutrition and anemia, which retard children’s mental and physical growth[17], significantly contribute to school absenteeism[8]. Helminths mainly reside in gastrointestinal tract and can also infect liver and other organs. The infection is generally spread through contaminated soil with helminths and their eggs in the areas with poor sanitation[18]. Helminths is a large veterinary health problem to farm yard animals and responsible for 3%-8% of their weight loss and 28% of death[19].

[Table 1] shows the prevalence of helminthiasis in three major continents. It has been observed that African and Asian are affected more compared to America. This data supports the statement that helminthiasis is more common in developing countries than developed countries.
Table 1: Prevalence of different helminthes in major continents.

Click here to view

  3. Conventional drug therapy for helminthiasis Top

The current mass drug treatment of helminths produces side effects [Table 2] like abdominal disturbances, nausea, vomiting, headache, diarrhea, weight loss and many of the drugs are not recommended to use during pregnancy[20]. Consequently agranulocytosis and teratogenicity are major adverse effects of the conventional medicines. None of the chemotherapeutic drugs meets the ideal requirements of anthelmintic such as broad spectrum of activity, single dose cure, free from side effects and cost effectiveness. Moreover, the increase of resistance[21], toxic residue of synthetic drugs, less availability and high cost requires the search for alternative medicinal system to overcome associated problems.
Table 2: WHO-recommended anthelminthic drugs.

Click here to view

  4. Herbal constituents as new natural leads Top

The World Medicines Situation 2011[22] reports that all the countries uses traditional medicines at some extent, among these, developing countries accounts for 70%-95%. Moreover, at least 25% of all currents drugs are obtained either directly or indirectly from natural origin. According to the herbal medicine market research report 2018, the global market of herbal medicines increasing exponentially to register a compound annual growth rate of 5.88% to reach US$ 129 million by 2023, which was 50 million in 2017[23]. As per the resolution of World Health Assembly (WHA62.13)[24], the member governments are mandatory to conserve, respect and universally communicate the knowledge of traditional medicines. Also, it prepares regulatory policies for development of new innovative traditional medicines to encourage appropriate, harmless, rational and effective uses.

A survey of plant constituents used as drugs in countries with WHO-Traditional Medicine Centers has identified 122 compounds derived from 94 plants, of which 80% were used for therapeutic purposes[1]. There is no doubt that herbs are among the vital natural sources for synthesis of various molecules from simple skeletal structure to complex one. Many popular components are based on traditional drugs, such as quinine (chloroquine & mefloquine), artemisinin, taxol (paclitaxel), camptothecin, khellin, sodium chromoglycate, galegine, metformin, papaverine, verapamil[1],[25],[26],[27]. Therefore, the WHO paid great attention on new chemical entities to manage NTDs including helminthiasis.

Thus, the present review demonstrates the potential of herbal constituents from different plants sources as new natural leads against helminthiasis [Table 3]. The method used for compiling following data consist of articles from the National Center for Biotechnology Information during the period 2005-2019.
Table 3: Different in vitro and in vivo anthelmintic studies of herbal constituents.

Click here to view

It was also observed from the data that phytoconstituents from different plants shown their distinct mechanism of action according to the major chemical group. [Table 4] summarizes the anthelmintic mechanism of different phytoconstituents.
Table 4: Anthelmintic mechanism of different phytoconstituents.

Click here to view

[Figure 1] shows that around 46 families of plants possess anthelmintic activity. Among them, family Asteraceae has the most plants that show anthelmintic potential. The helminthes used for evaluating anthelmintic activity are given in [Figure 2]. It has been observed that Haemonchus contortus was the most frequently used test agent for the study of anthelmintic potential.
Figure 1: Anthelmintic agents by plant families.

Click here to view
Figure 2: Anthelmintic studies of various plants.

Click here to view

Subsequently, [Figure 3] shows that the major plant parts possessing anthelmintic potential. Among all these parts, leaves have shown more potential than other plant parts.
Figure 3: Anthelmintic activity studied in different parts of plants.

Click here to view

Moreover, the [Figure 4] shows the various methods of extraction used to obtain anthelmintic phytoconstituents from the plants. The aqueous extract followed by methanolic and ethanolic extract have shown more significant anthelmintic potential.
Figure 4: The anthelmintic activity of crude powder and different fractions obtained from plants.

Click here to view

Nevertheless, the anthelmintic potential depends on the presence of major phytoconstituents present in the plants. It has been observed that, tannins (20%) shows more potential followed by flavonoids (19%), phenolic compounds (18%), saponins (12%), alkaloids (11%), various enzymes (8%), metals (2%), glycosides (2%) terpenoids (2%) and other phytoconstituents (3%) are responsible for anthelmintic activity [Table 3].

  5. Conclusions Top

The available conventional drugs fails to meet the ideal requirements of anthelmintic effect on all species of helminthes, single dose cure, free from side effects and cost-effective. Moreover, the increase of resistance, toxic impurities from synthetic drugs, less availability with higher cost requires the search for alternative system of medicine to overcome associated problems. The old classical systems of medicine and ethno medical surveys described the use of plants for the treatment of helminthic infection. This traditional knowledge of active herbs revealed effectiveness and safety of medicinal plants. However, their mode of action and the phytoconstituents responsible for the activity is not clearly known. The crude plant extracts, essential oils and isolates containing active principle show significant anthelmintic activity using in vitro and in vivo models. Moreover, to explore bioactivity of anthelmintic plants, further studies are needed, so as to discover different natural sources to emerge cost effective treatment of helminthic infection. The present review surveys literature that report name of plants, their anthelmintic activity and possible constituent that responsible for the bioactivity. The special attention is desired in order to standardize the bioactive plant with quantitative anthelmintic activity. Consequently, the design of palatable herbal preparations is needed to overcome side effects. Hence further study must be carried out to explore different plants of higher efficiency and negligible side effects.

Conflict of interest statement

We declare that we have no conflict of interest.[82]

  References Top

Cragg GM, Newman DJ. Natural products: A continuing source of novel drug leads. Biochim Biophys Acta-Gen Subj 2013; 1830(6): 3670-3695.  Back to cited text no. 1
World Health Organization. Neglected tropical diseases; 2019. [Online] Available at: [Accessed on 21 February 2019]  Back to cited text no. 2
Molyneux DH. Neglected tropical diseases-beyond the tipping point? Lancet 2010; 375(9708): 3-4.  Back to cited text no. 3
Adams J, Gurney K, Pendlebury D. Global research report-neglected tropical diseases. 2012; [Accessed on 21 February 2019] Available from: globalresearchreport-ntd.pdf.  Back to cited text no. 4
Liese BH, Schubert L. Official development assistance for health-how neglected are neglected tropical diseases? An analysis of health financing. Int Health 2009; 1(2): 141-147.  Back to cited text no. 5
Molyneux DH, Savioli L, Engels D. Neglected tropical diseases: Progress towards addressing the chronic pandemic. Lancet 2017; 389(10066): 312-325.  Back to cited text no. 6
Lobo DA, Velayudhan R, Chatterjee P, Kohli H, Hotez PJ. The neglected tropical diseases of India and South Asia: Review of their prevalence, distribution, and control or elimination. PLoS Negl Trop Dis 2011; 5(10): 1-7.  Back to cited text no. 7
World Health Organization. Working to overcome the global impact of neglected tropical diseases: First WHO report on neglected tropical diseases; 2010. [Online] Available at: handle/10665/44440/9789241564090_eng.pdf?sequence=1[Accessed on 21 February 2019].  Back to cited text no. 8
World Health Organization. Integrating neglected tropical diseases into global health and development: Fourth WHO report on neglected tropical diseases; 2017. [Online] Available at: handle/10665/255011/9789241565448-eng.pdf?sequence=1 [Accessed on 21 February 2019].  Back to cited text no. 9
Hotez PJ, Fenwick A, Savioli L, Molyneux DH. Rescuing the bottom billion through control of neglected tropical diseases. Lancet 2009; 373(9674): 1570-1575.  Back to cited text no. 10
WHO and Asian Development Bank. Addressing diseases of poverty: An initiative to reduce the unacceptable burden of neglected tropical diseases in the asia pacific region; 2016. [Online] Available at: http://www. [Accessed on 3 March 2019].  Back to cited text no. 11
Bundy DAP. The global burden of intestinal nematode disease. Trans R Soc Trop Med Hyg 1994; 88(3): 259-261.  Back to cited text no. 12
Bundy DAP, de Silva NR. Can we deworm this wormy world? Br Med Bull 1998; 54(2): 421-432.  Back to cited text no. 13
Wink M. Medicinal plants: A source of anti-parasitic secondary metabolites. Molecules 2012; 17(11): 12771-12791.  Back to cited text no. 14
Reynolds J. Lab procedures manual. Richl Coll USA 2002. [Online] Available at: manual/helminths.pdf [Accessed on 12 January 2019].  Back to cited text no. 15
Pullan RL, Smith JL, Jasrasaria R, Brooker SJ. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors 2014; 7(1): 37.  Back to cited text no. 16
Hall A, Hewitt G, Tuffrey V, de Silva N. A review and meta-analysis of the impact of intestinal worms on child growth and nutrition. Matern Child Nutr 2008; 4(S1): 118-236.  Back to cited text no. 17
Mascarini-Serra L. Prevention of soil-transmitted helminth infection. J Glob Infect Dis 2011; 3(2): 175.  Back to cited text no. 18
Waller PJ. Sustainable helminth control of ruminants in developing countries. Vet Parasitol 1997; 71(2-3): 195-207.  Back to cited text no. 19
Bacchi CJ, Nathan HC, Livingston T, Valladares G, Saric M, Sayer PD, et al. Differential susceptibility to DL-alpha-difluoromethylornithine in clinical isolates of Trypanosoma brucei rhodesiense. Antimicrob Agents Chemother 1990; 34(6): 1183-1188.  Back to cited text no. 20
Geerts S, Gryseels B. Drug resistance in human helminths: Current situation and lessons from livestock. Clin Microbiol Rev 2000; 13(2): 207-222.  Back to cited text no. 21
Molly Meri Robinson XZ. The world medicines situation 2011 traditional medicines: Global situation, issues and challenges. 3rd Edition. Geneva: World Heal Organ; 2011, p.1-14.  Back to cited text no. 22
Market Research Future. Herbal medicine market research report forecast to 2023. [Online] Available at: reports/herbal-medicine-market-3250 [Accessed on 18 January 2019].  Back to cited text no. 23
World Health Organization. ‘Traditional medicine’, sixty-second World Health Assembly, Resolution WHA62.13; 2009. [Online] Available at:[Accessed on 14 January 2019].  Back to cited text no. 24
Khan MSA, Ahmad I. Herbal medicine: Current trends and future prospects. In: New Look to phytomedicine. Cambridge: Elsevier; 2019, p. 3-13.  Back to cited text no. 25
Natural product as a source of lead to the design of new drugs. Nat Prod Chem Res 2014; 2(6). doi:10.4172/2329-6836.1000156.  Back to cited text no. 26
Koparde AA, Doijad RC, Magdum CS. Natural products in drug discovery. In: Pharmacognosy-medicinal plants. London: IntechOpen; 2019.  Back to cited text no. 27
Iqbal Z, Lateef M, Jabbar A, Ghayur MN, Gilani AH. In vivo anthelmintic activity of Butea monosperma against Trichostrongylid nematodes in sheep. Fitoterapia 2006; 77(2): 137-140.  Back to cited text no. 28
Iqbal Z, Lateef M, Jabbar A, Ghayur MN, Gilani AH. In vitro and in vivo anthelmintic activity of Nicotiana tabacum L. leaves against gastrointestinal nematodes of sheep. Phyther Res 2006; 20(1): 46-48.  Back to cited text no. 29
Jegede OC, Ajanusi JO, Adaudi AO, Agbede RIS. Anthelmintic efficacy of extracts of Spigelia anthelmia Linn. on experimental Nippostrongylus braziliensis in rats. J Vet Sci 2006; 7(3): 229-232.  Back to cited text no. 30
Araújo SA, Soares AM dos S, Silva CR, Almeida Júnior EB, Rocha CQ, Ferreira AT da S, et al. In vitro anthelmintic effects of Spigelia anthelmia protein fractions against Haemonchus contortus. PLoS One 2017; 12(12): e0189803. doi:10.1371/journal.pone.0189803.  Back to cited text no. 31
Behnke JM, Buttle DJ, Stepek G, Lowe A, Duce IR. Developing novel anthelmintics from plant cysteine proteinases. Parasit Vectors 2008; 1: 29.  Back to cited text no. 32
Tariq KA, Chishti MZ, Ahmad F, Shawl AS. Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Vet Parasitol 2009; 160(1-2): 83-88.  Back to cited text no. 33
Kosalge S, Fursule RA. Investigation of in vitro anthelmintic activity of thespesia lampas (Cav.). Asian J Pharm Clin Res 2009; 2(2): 69-71.  Back to cited text no. 34
Jatsa HB, Sock ETN, Tchuente LAT, Kamtchouing P. Evaluation of the in vivo activity of different concentrations of Clerodendrum umbellatum poir against Schistosoma mansoni infection in mice. African J Tradit Complement Altern Med 2009; 6(3): 216-221.  Back to cited text no. 35
Deore SL, Khadabadi SS. In vitro anthelmintic studies of Chlorophytum borivilianum Sant. & Fernandez tubers. Indian J Nat Prod Resour 2010; 1(1): 53-56.  Back to cited text no. 36
Kaur S, Kumar B, Puri S, Tiwari PDK. Comparative study of anthelmintic activity of aqueous and ethanolic extract of bark of Holoptelea integrifolia. Int J Drug Dev Res 2010; 2(4): 758-763.  Back to cited text no. 37
Durga N, Padmaa MP. Evaluation of anthelmintic activity of stem bark of Holoptelea integrifolia (Roxb) Planch. Int J Res Ayurveda Pharm 2010; 1(2): 637-641.  Back to cited text no. 38
Ademola IO, Eloff JN. In vitro anthelmintic effect of Anogeissus leiocarpus (DC.) Guill. & Perr. leaf extracts and fractions on developmental stages of Haemonchus contortus. African J Tradit Complement Altern Med 2011; 8(2): 134-139.  Back to cited text no. 39
Badar N, Iqbal Z, Khan MN, Akhtar MS. In vitro and in vivo anthelmintic activity of Acacia nilotica (L.) willd. ex delile bark and leaves. Pak Vet J 2011; 31(3): 185-191.  Back to cited text no. 40
Wabo Poné J, Fossi Tankoua O, Yondo J, Komtangi MC, Mbida M, Bilong Bilong CF. The in vitro effects of aqueous and ethanolic extracts of the leaves of Ageratum conyzoides (Asteraceae) on three life cycle stages of the parasitic nematode Heligmosomoides bakeri (Nematoda: Heligmosomatidae). Vet Med Int 2011; 2011: 1-5.  Back to cited text no. 41
Ali N, Ali Shah SW, Shah I, Ahmed G, Ghias M, Khan I, et al. Anthelmintic and relaxant activities of Verbascum thapsus Mullein. BMC Complement Altern Med 2012; 12(1): 519.  Back to cited text no. 42
Ferreira LE, Castro PMN, Chagas ACS, França SC, Beleboni RO. In vitro anthelmintic activity of aqueous leaf extract of Annona muricata L. (Annonaceae) against Haemonchus contortus from sheep. Exp Parasitol 2013; 134(3): 327-332.  Back to cited text no. 43
Ali N, Aleem U, Ali Shah SW, Shah I, Junaid M, Ahmed G, et al. Acute toxicity, brine shrimp cytotoxicity, anthelmintic and relaxant potentials of fruits of Rubus fruticosus agg. BMC Complement Altern Med 2013; 13(1): 138.  Back to cited text no. 44
Raju GS, Moghal MR, Dewan SMR, Amin MN, Billah M. Characterization of phytoconstituents and evaluation of total phenolic content, anthelmintic, and antimicrobial activities of Solanum violaceum Ortega. Avicenna J Phytomed 2013; 3(4): 313-320.  Back to cited text no. 45
Kuri S, Billah MM, Rana SMM, Naim Z, Islam MM, Hasanuzzaman M, et al. Phytochemical and in vitro biological investigations of methanolic extracts of Enhydra fluctuans Lour. Asian Pac J Trop Biomed 2014; 4(4): 299-305.  Back to cited text no. 46
Nawaz M, Sajid SM, Zubair M, Hussain J, Abbasi Z, Mohi A, et al. In vitro and in vivo anthelmintic activity of leaves of Azadirachta indica, Dalbergia sisso and Morus alba against Haemonchus contortus. Glob Vet 2014; 13(6): 996-1001.  Back to cited text no. 47
Chouhan G, Islamuddin M, Want MY, Abdin MZ, Ozbak HA, Hemeg HA, et al. Apoptosis mediated leishmanicidal activity of Azadirachta indica bioactive fractions is accompanied by Th1 immunostimulatory potential and therapeutic cure in vivo. Parasit Vectors 2015; 8: 183.  Back to cited text no. 48
Aggarwal R, Kaur K, Suri M, Bagai U. Anthelmintic potential of Calotropis procera, Azadirachta indica and Punica granatum against Gastrothylax indicus. J Parasit Dis Organ Indian Soc Parasitol 2016; 40(4): 1230-1238.  Back to cited text no. 49
Debebe Y, Tefera M, Mekonnen W, Abebe D, Woldekidan S, Abebe A, et al. Evaluation of anthelmintic potential of the Ethiopian medicinal plant Embelia schimperi Vatke in vivo and in vitro against some intestinal parasites. BMC Complement Altern Med 2015; 15: 187.  Back to cited text no. 50
Gogoi S, Yadav AK. In vitro and in vivo anthelmintic effects of Caesalpinia bonducella (L.) Roxb. leaf extract on Hymenolepis diminuta (Cestoda) and Syphacia obvelata (Nematoda). J Intercult Ethnopharmacol 2016; 5(4): 427-433.  Back to cited text no. 51
Zaman MA, Iqbal Z, Abbas RZ, Khan MN. Anticoccidial activity of herbal complex in broiler chickens challenged with Eimeria tenella. Parasitology 2012; 139(2): 237-243.  Back to cited text no. 52
Desrues O, Peña-Espinoza M, Hansen TVA, Enemark HL, Thamsborg SM. Anti-parasitic activity of pelleted sainfoin (Onobrychis viciifolia) against Ostertagia ostertagi and Cooperia oncophora in calves. Parasit Vectors 2016; 9: 329.  Back to cited text no. 53
Nath P, Yadav AK. Anthelmintic activity of a standardized extract from the rhizomes of Acorus calamus Linn. (Acoraceae) against experimentally induced cestodiasis in rats. J Intercult Ethnopharmacol 2016; 5(4): 390-395.  Back to cited text no. 54
Kumar V, Reddy SGE, Chauhan U, Kumar N, Singh B. Chemical composition and larvicidal activity of Zanthoxylum armatum against diamondback moth, Plutella xylostella. Nat Prod Res 2016; 30(6): 689-692.  Back to cited text no. 55
Spiegler V, Liebau E, Hensel A. Anthelmintic activity of procyanidins from West African medicinal plants-insights into phytochemistry and molecular targets. Planta Medica Int Open 2017; 4(S1). doi:10.1055/ s-0037-1608560.  Back to cited text no. 56
Ngouateu Teufack SE, NMbogning Tayo G, Ngangout Alidou M, Yondo J, Djiomene AF, Wabo Poné J, et al. Anthelminthic properties of methylene chloride-methanol (1:1) extracts of two Cameroonians medicinal plants on Heligmosomoides bakeri (Nematoda: Heligmosomatidea). BMC Complement Altern Med 2017; 17: 400.  Back to cited text no. 57
Kalmobe J, Ndjonka D, Boursou D, Vildina JD, Liebau E. Phytochemical analysis and in vitro anthelmintic activity of Lophira lanceolata (Ochnaceae) on the bovine parasite Onchocerca ochengi and on drug resistant strains of the free-living nematode Caenorhabditis elegans. BMC Complement Altern Med 2017; 17: 404.  Back to cited text no. 58
Zenebe S, Feyera T, Assefa S. In vitro anthelmintic activity of crude extracts of aerial parts of Cissus quadrangularis L. and leaves of Schinus molle L. against Haemonchus contortus. Biomed Res Int 2017; 2017: 1-6.  Back to cited text no. 59
Mohanamba E, Shobana K, Sree MS, Kusuma GM, Satish K, Vijayakumar B. Isolation of alcoholic extract of Cissus quadrangularis and evaluation of in-vitro anthelmintic activity. Int J Nov Trends Pharm Sci 2011; 1(1): 6-9.  Back to cited text no. 60
Zangueu CB, Olounlade AP, Ossokomack M, Djouatsa YNN, Alowanou GG, Azebaze AGB, et al. In vitro effects of aqueous extract from Maytenus senegalensis (Lam.) Exell stem bark on egg hatching, larval migration and adult worms of Haemonchus contortus. BMC Vet Res 2018; 14(1): 147.  Back to cited text no. 61
Jamous RM, Ali-Shtayeh MS, Abu-Zaitoun SY, Markovics A, Azaizeh H. Effects of selected Palestinian plants on the in vitro exsheathment of the third stage larvae of gastrointestinal nematodes. BMC Vet Res 2017; 13(1): 1-11.  Back to cited text no. 62
Váradyová Z, Mrav áková D, Babják M, Bryszak M, Grešáková, obanová K, et al. Effects of herbal nutraceuticals and/or zinc against Haemonchus contortus in lambs experimentally infected. BMC Vet Res 2018; 14(1): 1-12.  Back to cited text no. 63
Banerjee T, Singh A, Kumar S, Dhanani T, Gajbhiye NA, Koley TK, et al. Ovicidal and larvicidal effects of extracts from leaves of Andrographis paniculata (Burm. f.) Wall.ex Nees against field isolates of human hookworm (Ancylostoma duodenale). J Ethnopharmacol 2019. doi:10.1016/J.JEP.2019.02.021.  Back to cited text no. 64
Herath HMPD, Preston S, Jabbar A, Garcia-Bustos J, Addison RS, Hayes S, et al. Selected pyrones from the plants Cryptocarya novoguineensis (Lauraceae) and Piper methysticum (Piperaceae) with activity against Haemonchus contortus in vitro. Int J Parasitol Drugs drug Resist 2019; 9: 72-79.  Back to cited text no. 65
Acevedo-Ramfírez PM del C, Hallal-Calleros C, Flores-Pérez I, Alba-Hurtado F, Mendoza-Garfías MB, Castro del Campo N, et al. Anthelmintic effect and tissue alterations induced in vitro by hydrolysable tannins on the adult stage of the gastrointestinal nematode Haemonchus contortus. Vet Parasitol 2019; 266: 1-6.  Back to cited text no. 66
Borges DGL, Echeverria JT, de Oliveira TL, Heckler RP, de Freitas MG, Damasceno-Junior GA, et al. Discovery of potential ovicidal natural products using metabolomics. PLoS One 2019; 14(1): e0211237. doi:10.1371/journal.pone.0211237.  Back to cited text no. 67
Esteban-Ballesteros M, Sanchis J, Gutiérrez-Corbo C, Balaña-Fouce R, Rojo-Vázquez FA, González-Lanza C, et al. In vitro anthelmintic activity and safety of different plant species against the ovine gastrointestinal nematode Teladorsagia circumcincta. Res Vet Sci 2019; 123: 153-158.  Back to cited text no. 68
Morais S, Silva K, Araujo H, Vieira I, Alves D, Fontenelle R, et al. Anacardic acid constituents from cashew nut shell liquid: NMR characterization and the effect of unsaturation on its biological activities. Pharmaceuticals 2017; 10(4): 31.  Back to cited text no. 69
Cortes-Morales JA, Olmedo-Juárez A, Trejo-Tapia G, González- Cortazar M, Domínguez-Mendoza BE, Mendoza-de Gives P, et al. In vitro ovicidal activity of Baccharis conferta Kunth against Haemonchus contortus. Exp Parasitol 2019; 197: 20-28.  Back to cited text no. 70
Moussouni L, Benhanifia M, Ayad A. In-vitro anthelmintic effects of aqueous and ethanolic extracts of Marrubium vulgare leaves against bovine digestive strongyles. Turkish J Parasitol 2018; 42(4): 262-267.  Back to cited text no. 71
Ferreira LE, Benincasa BI, Fachin AL, Contini SHT, França SC, Chagas ACS, et al. Essential oils of Citrus aurantifolia, Anthemis nobile and Lavandula officinalis: In vitro anthelmintic activities against Haemonchus contortus. Parasit Vectors 2018; 11(1): 269.  Back to cited text no. 72
Soares AMS, Oliveira JTA, Rocha CQ, Ferreira ATS, Perales J, Zanatta AC, et al. Myracrodruon urundeuva seed exudates proteome and anthelmintic activity against Haemonchus contortus. PLoS One 2018; 13(7): e0200848. doi: 10.1371/journal.pone.0200848.  Back to cited text no. 73
Shalaby H, El Namaky A, Kandil O, Hassan N. In vitro assessment of Balanites aegyptiaca fruit methanolic extract on the adult Toxocara canis. Iran J Parasitol 2018; 13(4): 643-647.  Back to cited text no. 74
Roy H, Chakraborty A, Bhanja S, Nayak BS, Mishra SR, Ellaiah P. Preliminary phytochemical investigation and anthelmintic activity of Acanthospermum hispidum DC. J Pharm Sci Technol 2010; 2(5): 217-221.  Back to cited text no. 75
Kumar D, Mishra SK, Tripathi HC. Mechanism of anthelmintic action of benzylisothiocyanate. Fitoterapia 1991; 62: 403-410.  Back to cited text no. 76
Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM. In vitro and in vivo anthelmintic efficacy of plant cysteine proteinases against the rodent gastrointestinal nematode, Trichuris muris. Parasitology 2006; 132(5): 681-689.  Back to cited text no. 77
Das B, Tandon V, Saha N. Anthelmintic efficacy of Flemingia vestita (Fabaceae): Alteration in the activities of some glycolytic enzymes in the cestode, Raillietina echinobothrida. Parasitol Res 2004; 93(4): 253-261.  Back to cited text no. 78
John J, Mehta A, Shukla S, Mehta P. A report on anthelmintic activity of Cassia tora leaves. Songklanakarin J Sci Technol 2009; 31(3): 269271.  Back to cited text no. 79
Melzig MF, Bader G, Loose R. Investigations of the mechanism of membrane activity of selected Triterpenoid Saponins. Planta Med 2001; 67(1): 43-48.  Back to cited text no. 80
Athanasiadou S, Kyriazakis I, Jackson F, Coop RL. Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: In vitro and in vivo studies. Vet Parasitol 2001; 99(3): 205-219.  Back to cited text no. 81
Patel J, Kumar GS, Qureshi MS, Jena PK. Anthelmintic activity of ethanolic extract of whole plant of Eupatorium odoratum L. Int J Phytomed 2010; 2(2): 127-132.  Back to cited text no. 82


  [Figure 1], [Figure 2], [Figure 3], [Figure 4]

  [Table 1], [Table 2], [Table 3], [Table 4]

This article has been cited by
1 Toxic action of substances from male fern Dryopteris filix-mas (L.) Schott (1834) on free-living soil nematode Caenorhabditis elegans Maupas (1900)
Anastasia Egorova,Alsu Gatiyatullina,Dmitriy Terenzhev,Timur Belov,Tatiana Kalinnikova,S. Knyazev,O. Loretts,V. Kukhar,O. Panfilova,M. Tsoy
E3S Web of Conferences. 2021; 254: 09011
[Pubmed] | [DOI]
2 Physiologic and Metabolic Changes in Crepidiastrum denticulatum According to Different Energy Levels of UV-B Radiation
Song-Yi Park,Mee-Youn Lee,Choong-Hwan Lee,Myung-Min Oh
International Journal of Molecular Sciences. 2020; 21(19): 7134
[Pubmed] | [DOI]
3 Antibacterial activity of different crude extracts of Suaeda maritima used traditionally for the treatment of hepatitis
Musaab Adil Dafallah Bilal,Mohammad Amzad Hossain
Biocatalysis and Agricultural Biotechnology. 2019; : 101383
[Pubmed] | [DOI]
4 Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review
Shashikant B. Bagade,Mayur Patil
Critical Reviews in Analytical Chemistry. 2019; : 1
[Pubmed] | [DOI]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  2. Helminths aff...3. Conventional ...4. Herbal consti...
  In this article
1. Introduction
5. Conclusions
Article Figures
Article Tables

 Article Access Statistics
    PDF Downloaded530    
    Comments [Add]    
    Cited by others 4    

Recommend this journal