Impact Factor 2021: 3.041 (@Clarivate Analytics)
5-Year Impact Factor: 2.776 (@Clarivate Analytics)
Impact Factor Rank: 10/24, Q2 (Tropical Medicine)
  • Users Online: 76
  • Print this page
  • Email this page
Year : 2018  |  Volume : 11  |  Issue : 8  |  Page : 453-459

Potential applications of lactic acid bacteria and bacteriocins in anti-mycobacterial therapy

Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai-600119. Tamil Nadu, India

Correspondence Address:
Anbarasu Sivaraj
Scientist-B, Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1995-7645.240080

Rights and Permissions

Tuberculosis (TB) is a communicable disease caused by Mycobacterium tuberculosis (M. tuberculosis). WHO estimated that 10.4 million new (incident) TB cases worldwide in year 2016. The increased prevalence of drug resistant strains and side effects associated with the current anti-tubercular drugs make the treatment options more complicated. Hence, there are necessities to identify new drug candidates to fight against various sub-populations of M. tuberculosis with less or no toxicity/side effects and shorter treatment duration. Bacteriocins produced by lactic acid bacteria (LAB) attract attention of researchers because of its “Generally recognized as safe” status. LAB and its bacteriocins possess an effective antimicrobial activity against various bacteria and fungi. Interestingly bacteriocins such as nisin and lacticin 3147 have shown antimycobacterial activity in vitro. As probiotics, LAB plays a vital role in promoting various health benefits including ability to modulate immune response against various infectious diseases. LAB and its metabolic products activate immune system and thereby limiting the M. tuberculosis pathogenesis. The protein and peptide engineering techniques paved the ways to obtain hybrid bacteriocin derivatives from the known peptide sequence of existing bacteriocin. In this review, we focus on the antimycobacterial property and immunomodulatory role of LAB and its metabolic products. Techniques for large scale synthesis of potential bacteriocin with multifunctional activity and enhanced stability are also discussed.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded787    
    Comments [Add]    
    Cited by others 5    

Recommend this journal