ORIGINAL ARTICLE |
|
Year : 2018 | Volume
: 11
| Issue : 2 | Page : 116-122 |
|
Antidiabetic effects of galactomannans from Adenanthera pavonina L. in streptozotocin-induced diabetic mice
Icaro Gusmão Pinto Vieira1, Francisca Noélia Pereira Mendes1, Sabrina César da Silva2, Raquel Teixeira Terceiro Paim2, Bruno Bezerra da Silva2, Stephen Rathinaraj Benjamin2, Eridan Orlando Pereira Tramontina Florean2, Maria Izabel Florindo Guedes2
1 Technological Development Park (PADETEC), Federal University of Ceará, Pici Campus, 60455-970, Fortaleza, Ceará, Brazil 2 Department of Health and Nutrition, State University of Ceará, Av. Dr. Silas Munguba 1700, Itaperi campus, 60714-903, Fortaleza, Ceará, Brazil
Correspondence Address:
Stephen Rathinaraj Benjamin Department of Health and Nutrition, State University of Ceará, Itaperi campus, 60714-903, Fortaleza, CE Brazil
 Source of Support: None, Conflict of Interest: None  | 4 |
DOI: 10.4103/1995-7645.225018
|
|
Objective: To evaluate the antidiabetic effect of galactomannans extracted from Adenanthera pavonina's L. seeds (GAP) in streptozotocin (STZ) induced diabetic mice. Methods: The preliminary galactomannan yield from Adenanthera pavonina L. plant and extraction products composition were evaluated. Various chemical characterization methods like thin layer chromatography, Fourier transform infrared spectroscopy, 1H and 13C nuclear magnetic resonance, and molecular weight by gel permeation chromatography have been employed to characterize the extracted galactomannan. The mice were divided in four groups: Normal control, diabetic control, GAP (1% and 2%) treated and standard drug treated groups. Diabetic mice received treatment daily for 30 d. Diabetes was induced by STZ at a single dose of 120 mg/kg. Body weight, water and food intake, fasting blood glucose, total cholesterol and triglycerides were measured. Histopathological analysis of pancreas and liver were performed to evaluate STZ-induced tissue injuries. Results: The isolated and extracted galactomannan from Adenanthera pavonina was confirmed by various chemical characterization methods. GAP exhibited a 1.46:1 mannose: galactose ratio, and high molar weight. Both GAP enriched food decreased glycaemia, total cholesterol and triacylglycerol. GAP didn't interfere on food intakes or body weight, although it increased water intake. Furthermore, the relative liver weight indicated toxic galactomannan effects on the histopathological changes of the pancreas in STZ induced diabetes. Conclusions: It is concluded that GAP is a natural product that contains potent galactomannan and is useful in preventing and treating diabetes.
|
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|