Impact Factor 2021: 3.041 (@Clarivate Analytics)
5-Year Impact Factor: 2.776 (@Clarivate Analytics)
Impact Factor Rank: 10/24, Q2 (Tropical Medicine)
  • Users Online: 439
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2018  |  Volume : 11  |  Issue : 1  |  Page : 63-67

High glucose induces myocardial cell injury through increasing reactive oxygen species production


1 Department of Critical Care Medicine, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province 430014, China
2 Department of Endocrinology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, 430014, China

Correspondence Address:
Xiao-Yu Lyu
Attending Physician, Department of Endocrinology, the Central Hospital of Wuhan, No. 26, Shengli Street, Jiang’an District, Wuhan City, Hubei Province 430014
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1995-7645.223575

Rights and Permissions

Objective: To study the injury effect and molecular mechanism of high glucose on myocardial cells. Methods: Myocardial cells H9c2 were cultured and divided into the control group treated with DMEM containing 5.5 mmol/L glucose, the high glucose group treated with DMEM containing 35 mmol/L glucose, and the N-acetylcysteine (NAC) group pre-treated with 1 000 μmol/L NAC and treated with DMEM containing 1 000 μmol/L NAC and 35 mmol/L glucose. The production of ROS and the expression of mitochondria pathway apoptosis molecules in cells as well as the contents of collagen and collagen metabolism molecules were measured. Results: After 8 h, 16 h and 24 h of treatment, ROS RFU as well as Bax, CytC, Caspase-3 and Caspase-9 protein expression in cells and Col-I, Col-III, PINP and PIIINP protein levels in culture medium of high glucose group were higher than those of control group, Bcl-2 protein expression were lower than those of control group, but CTX-I protein levels in culture medium were not significantly different from those of control group; after 24 h of treatment, Bax, CytC, Caspase-3 and Caspase-9 protein expression in cells as well as Col-I, Col-III, PINP and PIIINP protein levels in culture medium of NAC group were lower than those of high glucose group whereas Bcl-2 protein expression was higher than that of high glucose group. Conclusions: High glucose can induce myocardial cell apoptosis, increase collagen synthesis and accelerate interstitial fibrosis by increasing the production of reactive oxygen species.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2539    
    Printed148    
    Emailed0    
    PDF Downloaded224    
    Comments [Add]    
    Cited by others 1    

Recommend this journal