ORIGINAL ARTICLE |
|
Year : 2018 | Volume
: 11
| Issue : 1 | Page : 63-67 |
|
High glucose induces myocardial cell injury through increasing reactive oxygen species production
Yu-Jun Wang1, Xiao-Yu Lyu2, Li Yu1
1 Department of Critical Care Medicine, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province 430014, China 2 Department of Endocrinology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, 430014, China
Correspondence Address:
Xiao-Yu Lyu Attending Physician, Department of Endocrinology, the Central Hospital of Wuhan, No. 26, Shengli Street, Jiang’an District, Wuhan City, Hubei Province 430014 China
 Source of Support: None, Conflict of Interest: None
DOI: 10.4103/1995-7645.223575
|
|
Objective: To study the injury effect and molecular mechanism of high glucose on myocardial cells. Methods: Myocardial cells H9c2 were cultured and divided into the control group treated with DMEM containing 5.5 mmol/L glucose, the high glucose group treated with DMEM containing 35 mmol/L glucose, and the N-acetylcysteine (NAC) group pre-treated with 1 000 μmol/L NAC and treated with DMEM containing 1 000 μmol/L NAC and 35 mmol/L glucose. The production of ROS and the expression of mitochondria pathway apoptosis molecules in cells as well as the contents of collagen and collagen metabolism molecules were measured. Results: After 8 h, 16 h and 24 h of treatment, ROS RFU as well as Bax, CytC, Caspase-3 and Caspase-9 protein expression in cells and Col-I, Col-III, PINP and PIIINP protein levels in culture medium of high glucose group were higher than those of control group, Bcl-2 protein expression were lower than those of control group, but CTX-I protein levels in culture medium were not significantly different from those of control group; after 24 h of treatment, Bax, CytC, Caspase-3 and Caspase-9 protein expression in cells as well as Col-I, Col-III, PINP and PIIINP protein levels in culture medium of NAC group were lower than those of high glucose group whereas Bcl-2 protein expression was higher than that of high glucose group. Conclusions: High glucose can induce myocardial cell apoptosis, increase collagen synthesis and accelerate interstitial fibrosis by increasing the production of reactive oxygen species.
|
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|